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1 Introduction

The underrepresentation of women in science, technology, engineering, and math (STEM) has

been widely studied. While the gender gap is less pronounced in fields like biology, chemistry,

and mathematics in the U.S. (Cheryan et al., 2017), women remain significantly underrepresented

in computer science (CS), physics, and engineering, with the female-to-male ratio plateauing at

approximately 1-to-4 (Cheryan et al., 2017; Hill, Corbett and St. Rose, 2010). These disparities

are driven in part by faster growth in male participation and higher attrition rates among women

(Penner and Willer, 2019). Given that differential selection into math- and science-intensive fields

explains a substantial share of the gender wage gap, increasing gender parity in college major choice

could meaningfully reduce this gap (Brown and Corcoran, 1997; Blau and Kahn, 2000). It could also

narrow gender differences in the accumulation of STEM-related human capital, reduce misallocation

of talent, shape the future workforce, promote both efficiency and equality, and ease constraints on

long-term economic growth (Altonji, Blom and Meghir, 2012; Hsieh et al., 2019).

Past literature has emphasized two major channels behind women’s underrepresentation in STEM

majors: differences in preferences for major attributes, such as expected returns, job amenities, and

social values (Arcidiacono, 2004; Reuben, Wiswall and Zafar, 2017; Ngo and Dustan, 2024; Shi,

2018), and differences in prior knowledge of STEM (Stinebrickner and Stinebrickner, 2014; Akyol,

Krishna and Lychagin, 2024; Arcidiacono et al., 2020). Numerous interventions have been designed

and implemented to target these channels. To address the first channel, offering opportunities

to interact with female instructors, role models, or advisors has been shown to increase women’s

likelihood of choosing and persisting in STEM majors (Bettinger and Long, 2005; Breda et al.,

2023; Carrell, Page and West, 2010; Porter and Serra, 2020; Riley, 2024; Canaan and Mouganie,

2022; Mulhern, 2023). To address the second channel, in-person, individualized counseling and
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coaching have been shown to substantially increase academic performance in STEM, particularly

among female students (Bettinger and Baker, 2014; Carrell and Sacerdote, 2017; Canaan, Deeb and

Mouganie, 2022). Although these interventions are effective, they risk disproportionately burdening

female faculty and students, potentially reinforcing existing gender disparities, as women already

spend more time on service-related activities than men (Guarino and Borden, 2017; Buckles, 2019).

This paper focuses on an overlooked input: the in-class curriculum accompanied by small-scale

complementary initiatives. We exploit a quasi-experimental setting at a STEM-focused liberal

arts college in the United States, where in 2006 the CS department revised its introductory course

to attract more women. Because this introductory course is required for all freshmen admitted

to the college throughout the sample period, regardless of whether they choose to major in CS,

the reform affected the entire student body. The redesigned course placed greater emphasis on

the social relevance of CS, aiming to correct women’s misconceptions about the discipline and to

reduce feelings of inadequacy. Additionally, two complementary initiatives aimed at encouraging

participation in CS were launched around the same time: (1) offering research opportunities to

approximately 10 students immediately after their first year of college, regardless of gender, and (2)

sending approximately 5 female students per year to a CS conference. Given that the redesigned

course and complementary initiatives were introduced together, our estimates capture their combined

effect; we refer to this package as the curricular reform. Using a difference-in-differences framework,

we estimate the differential effect of the reform on women relative to men by comparing changes

in outcomes for women before and after the reform to contemporaneous changes for men. The

outcomes of interest include major choices and subsequent post-graduation outcomes, drawing on

detailed individual-level institutional data that link academic records to post-graduation outcomes.

We find that the reform increased the probability that female students majored in computer

science by 12.1 percentage points relative to male students. The reform also significantly increased
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women’s post-graduation earnings, with women earning about 16.9% more than men after graduation,

driven by sorting into higher-paying occupations. In addition, the reform reduced female students’

probability of pursuing graduate study immediately after college by 9 percentage points relative to

their male peers. Since graduate study is typically associated with lower stipends than full-time

employment, this decline in graduate school enrollment accounts for roughly half of the observed

earnings gains.

To assess potential unintended consequences and alternative explanations for our findings,

we conduct several additional analyses. First, despite concerns that delaying exposure to specific

foundational programming tools (e.g., object-oriented programming) could negatively affect students’

subsequent academic performance, we find no evidence of deterioration in any academic outcomes.

Second, based on descriptive evidence, it is unlikely that our results are driven by the nationwide

increase in CS popularity among female students. Lastly, institutional features remain stable over the

study period. Based on interviews with faculty and administrators, the reform was initiated solely

by the CS department and was not part of a broader college-wide reform. Instructor assignments

for this course remained the same before and after the reform.

We find that the primary channel through which the reform increased female students’ probability

of majoring in CS is improved retention among students who intended to major in CS at admission.

Prior to the reform, female CS intenders were 22.9 percentage points less likely than their male

counterparts to ultimately choose a CS major. After the reform, however, the probability that

female CS intenders majored in CS increased by 27.6 percentage points relative to men, effectively

eliminating the gender gap in retention. In contrast, we find limited evidence for alternative channels,

such as increased switching into CS among female students who did not initially intend to major in

CS or compositional changes in entering cohorts toward a higher share of female CS intenders.

The contribution of this paper is threefold. First, we provide causal evidence that curricular
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design, combined with initiatives that reshape departmental culture, can reduce gender gaps in

STEM. Relative to interventions that rely on role models or mentoring, which may impose additional

burdens on women or are difficult to scale, curricular reforms operate through changes to required

coursework and may therefore offer a more sustainable policy instrument. Existing STEM curricula

and departmental practices often place limited emphasis on the broader relevance of the discipline

and its applications to other fields and society. These features may differentially affect women, who

on average enter college with less prior STEM-related preparation (Carlana and Fort, 2022; Shi, 2018)

and place greater weight on prosocial considerations in career choice (Burbano, Padilla and Meier,

2024; Burbano et al., 2024; Shi, 2018). We contribute to this literature by identifying the causal

effect of reforming an introductory STEM course together with an accompanying cultural shift, and

by documenting the mechanisms through which these changes increase female participation. We

also show that the reform does not adversely affect the academic performance of male students.

Second, we provide evidence that the way STEM fields are presented can influence students’

major choices, particularly for women. Prior research emphasizes the role of preferences for job

amenities (Wiswall and Zafar, 2018; Zafar, 2013), family expectations (Wiswall and Zafar, 2021),

and prosocial preferences (Burbano, Padilla and Meier, 2024; Burbano et al., 2024; Shi, 2018), as

well as misperceptions about expected earnings across majors (Reuben, Wiswall and Zafar, 2017).

Related work shows that emphasizing communal or social goals increases women’s interest and

engagement in STEM (Boucher et al., 2017; Barrera et al., 2024). We add to this literature by

showing that curricular reforms that more accurately reflect the breadth and societal relevance of

STEM fields can substantially increase women’s persistence in STEM majors.

Third, we contribute to the literature on pedagogical practices and student outcomes. Prior work

demonstrates that instructional context and assessment design can shape performance, including

evidence that students from low socioeconomic backgrounds perform worse on mathematics

4



questions involving fictitious monetary contexts (Duquennois, 2022) and that female students

perform worse on free-response mathematics questions than on multiple-choice questions (Griselda,

2024). Other studies identify pedagogical approaches that improve outcomes, such as interactive

and collaborative learning and the use of real-world examples, which increase female students’

performance in introductory economics (Avery et al., 2024; Owen and Hagstrom, 2021) and

mathematics (Di Tommaso et al., 2024). We extend this literature by showing that curricular design

affects not only academic performance but also major choice and post-graduation labor market

outcomes.

2 Background

In this section, we describe the institutional setting and the curricular reform. Our setting

is a STEM-focused liberal arts college in the United States that offers six core majors: CS,

engineering, mathematics, physics, biology, and chemistry. Students may also pursue joint majors

(e.g., mathematics and CS or mathematics and biology) by completing coursework across departments.

All first-year students, regardless of intended major, are required to take a common set of introductory

courses in their first semester, including the introductory CS course that is the focus of this study.

Prior to 2006, the introductory CS course was Java-based and emphasized object-oriented

programming and problem solving. Faculty identified several limitations of this course. First, the

course pace did not accommodate the wide dispersion in students’ prior programming experience:

the material was too elementary for some students and overly challenging for others. Second, the

emphasis on object-oriented programming limited students’ exposure to CS as a broader discipline

and provided little context for its applications to other fields or to real-world problems.

In response to these concerns, the CS department implemented a redesigned introductory course

beginning with the 2006 entering cohort. The new curriculum adopted Python, rather than Java,
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as the primary programming language and reduced the emphasis on object-oriented programming.

While the redesigned course continued to cover core programming skills, it placed greater emphasis on

applications drawn from science and engineering, highlighting the role of CS across disciplines and its

relevance to real-world problem solving (Dodds et al., 2008; Alvarado, Dodds and Libeskind-Hadas,

2012).1

A central goal of the redesign was to reduce the salience of differences in prior programming

experience. Introductory courses in CS often create the perception that some students possess

substantially more background knowledge than others, which can disproportionately discourage

female students and reduce persistence in the field (Fischer, 2017; Mouganie and Wang, 2020). To

address this concern, the redesigned course begins with hands-on assignments using a programming

language developed by faculty specifically for the course. Since this language is new to all students,

the approach helps level the playing field and reduces the salience of pre-college experience.

The redesigned course also introduced a split-track structure to accommodate heterogeneous

skill levels. Before matriculation, all admitted students take an assessment exam measuring prior

CS and programming knowledge. Students with little or no prior experience are assigned to a

standard section, while those with demonstrated experience are assigned to an enrichment section.

Both tracks cover the same core concepts, but the enrichment section engages with more advanced

applications of these concepts. This structure allows experienced students to remain challenged

while reducing barriers to entry for students new to CS.

Concurrent with the curricular redesign, the CS department implemented two complementary

initiatives aimed at increasing student engagement in the field. First, the department expanded

undergraduate research opportunities after the first year, open to both women and men, with

approximately ten students selected annually. Second, the department provided financial support

1Bayer et al. (2020) presents a similar pedagogical approach in economics.

6



for a small number of female students, approximately five per year, to attend the Grace Hopper

Celebration of Women in Computing conference. To assess whether other institutional changes

might confound our estimates, we conducted interviews with CS faculty and staff from the Office of

Institutional Research. All interviewees confirmed that the 2006 curricular reform and accompanying

initiatives were developed independently by the CS department and were not part of a broader

college-wide effort to increase female participation in STEM. Instructor assignments for the

introductory course also remained unchanged before and after the reform.

The reform applied to students entering the college in Fall 2006 and later; students who

matriculated prior to Fall 2006 were unaffected. Because the curricular redesign, split-track system,

and complementary initiatives were introduced simultaneously, our estimates capture their combined

effect. However, the initiatives that explicitly targeted female students, namely, support for

attendance at the Grace Hopper conference, were limited in scale. With an average post-reform

female cohort size of 81.2 students, these initiatives reached approximately 6.2 percent of female

students, suggesting that their contribution to the estimated gender differential is likely to be

modest.

3 Data

3.1 Student Academic and Demographic Data

We obtain detailed administrative data covering all students who entered the college between 2000

and 2016. Each entering cohort consists of approximately 160 to 220 students. Information recorded

at admission includes gender, race, SAT and/or ACT scores, additional academic qualifications

(such as SAT subject tests and advanced high school coursework), and intended major at the time

of admission. Graduation records include students’ declared major, cumulative GPA, major GPA,

7



graduation year, and whether the student left the college without completing a degree. We also

observe detailed academic records for the introductory CS course and subsequent advanced CS

courses, including the semester in which each course was taken and the grades received.

In addition to single majors, the college offers joint majors across departments. During the

sample period, 460 students (14.7 percent) completed a joint major. We classify joint majors as

follows: Chemistry and Biology as Chemistry; Computer Science and Mathematics as Computer

Science; Mathematics and Biology as Mathematics; Mathematical and Computational Biology as

Biology; and Mathematics and Physics as Mathematics. A small fraction of students (135 students,

or 4.3 percent of the sample) completed a second major. For these students, we classify outcomes

based on the primary major.

Figure 1 plots the share of female students and the share of all students by major across cohorts,

along with the overall female share at the college. Biology and chemistry consistently exhibit high

female representation throughout the period, although these majors enroll relatively few students

(see Appendix Figure A1). Mathematics and physics also enroll a relatively high share of female

students compared to men, though less so than biology and chemistry. Engineering remains one

of the most popular majors throughout the period, and its female share closely tracks the overall

college trend, with no visible change around the reform.

In contrast, prior to 2006, CS had the lowest female representation among all majors, with

women accounting for approximately 15 to 20 percent of CS majors. Following the reform, the share

of female students majoring in CS increased sharply, reaching over 40 percent by 2016. While the

overall share of students majoring in CS also rose after the reform, the increase among women was

substantially larger. These changes coincide with the timing of the curricular reform and contrast

with the relatively stable trends observed in other STEM fields, suggesting a CS-specific response

rather than a broad institutional shift.
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Figure 1: Share of Female and All Students by Majors, 2000 to 2016 Cohorts
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Notes: This figure presents the evolution of the percentage of female (solid black) and all students (dashed black)
within each core major by admission cohort from 2000 to 2016, along with the percentage of female students at the
college (dotted blue). The red vertical dashed line indicates the CS curriculum reform in 2006.

Figure 2 presents analogous trends based on students’ intended majors at admission. Prior to

the reform, the female share among CS-intending students was again the lowest across majors, at

approximately 15 to 20 percent. Following the reform, the share of women intending to major in CS

increased steadily, exceeding 30 percent by 2016. Appendix Figure A2 reports the corresponding

total number of students by intended major.
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Figure 2: Share of Female and All Students by Intended Majors at Admission, 2000 to 2016 Cohorts
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Notes: This figure presents the evolution of the percentage of female students (solid black) and all students (dashed
black) within each intended core major by admission cohort from 2000 to 2016, as well as the overall percentage of
female students at the college (dotted blue). The vertical red dashed line indicates the 2006 curriculum reform.

3.2 Labor Market Earnings Data

To measure post-graduation labor market outcomes, we obtain placement data collected by

the Office of Advancement. These records include employer names, job titles, and, when available,

employment start and end dates for graduates’ post-college positions. Employment information is

primarily obtained through alumni self-reports on online profiles. For alumni who do not update their

profiles, the Office of Advancement manually verifies employment histories using publicly available

online sources, including LinkedIn. LinkedIn has been shown to provide broadly representative

information on the employment outcomes of college-educated workers in white-collar occupations
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(Amanzadeh, Kermani and McQuade, 2024), and has been increasingly used in economic research

on workforce composition and earnings (Berry, Maloney and Neumark, 2024; Amanzadeh, Kermani

and McQuade, 2024; Wheeler et al., 2022). Because our data incorporate manual verification rather

than conventional web scraping, they are of higher quality than typical LinkedIn-based datasets.

We focus on earnings at the start of graduates’ careers by examining the first job observed after

graduation, which has the lowest rate of missing information. For each position, we verify employer

names using official company websites and map job titles and industries to the closest Standard

Occupational Classification (SOC) code. We then assign to each student the median annual wage

associated with that SOC code using data from the Occupational Employment and Wage Statistics

(OEWS).2 Our earnings measure therefore captures differences in occupational sorting rather than

within-occupation wage variation.

Among students with available earnings data, 93 percent begin their first observed job within

five years of graduation. Employment information is missing for 47.0 percent of students in the

full sample, a rate slightly lower than that reported in prior studies using similar data sources

(Firoozi, 2025). Although the share of missing earnings observations is higher for post-reform cohorts

(55.1 percent) than for pre-reform cohorts (29.4 percent), there are no statistically or economically

meaningful differences in missingness by gender (Appendix Table A1).

Approximately 28.1 percent of students in the sample pursue graduate education. For students

entering graduate school, we assign stipend earnings using data from the PhD Stipends website,

which reports self-reported stipend information by year.3 Specifically, we assign the median stipend

reported for U.S. graduate programs in the year the student enters graduate school. Because

graduate stipends are typically lower than entry-level labor market earnings, and graduate school

attendance varies substantially across majors,4 we examine labor market earnings separately for

2https://www.bls.gov/oes/tables.htm (retrieved July 12, 2025).
3https://www.phdstipends.com/ (retrieved July 13, 2024).
4In our sample, the share of students pursuing a PhD is 12.2 percent in computer science, 19.9 percent in engineering,
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graduate school attendees and non-attendees in Section 5.

3.3 Summary Statistics

Table 1: Summary Statistics

Female
(N=1,223)

Male
(N=1,902)

Difference
(Male – Female)

Mean SD Mean SD Mean SE

Panel A: CS Major Outcomes

Majoring in CS 0.23 0.42 0.30 0.46 0.07*** 0.02
Intending to Major in CS 0.11 0.31 0.17 0.38 0.06*** 0.01
Took 1st Optional CS Course 0.50 0.50 0.51 0.50 0.01 0.02
Took 2nd Optional CS Course 0.36 0.48 0.43 0.50 0.08*** 0.02

Panel B: Post-Graduation Outcomes
Salary at First Job ($1,000) 65.79 33.25 71.56 34.31 5.77*** 1.70
Pursued Graduate Studies 0.31 0.46 0.26 0.44 -0.04* 0.02

Panel C: Academic Outcomes
Cumulative GPA 3.30 0.42 3.34 0.46 0.04** 0.02
Major GPA 3.30 0.44 3.38 0.44 0.08*** 0.02
Years to Graduation 4.06 0.54 4.07 0.48 0.00 0.02
Dropped Out 0.04 0.21 0.04 0.20 -0.00 0.01

Panel D: Pre-College Information

SAT Math Score 748.31 41.12 760.34 49.47 12.03*** 1.63
SAT Verbal Score 713.36 61.40 712.86 66.31 -0.50 2.32
SAT Total Score 1461.19 81.91 1473.88 99.50 12.70*** 3.27
Took SAT STEM Subject Test 0.82 0.38 0.79 0.41 -0.04*** 0.01
Took SAT Non-STEM Subject Test 0.03 0.17 0.03 0.18 0.01 0.01

Panel E: Race/Ethnicity

Asian 0.23 0.42 0.17 0.38 -0.06*** 0.01
Black 0.01 0.10 0.02 0.14 0.01** 0.00
Hispanic 0.02 0.15 0.04 0.20 0.02*** 0.01
White 0.52 0.50 0.53 0.50 0.01 0.02
Multi-race 0.05 0.22 0.03 0.18 -0.02** 0.01
Other 0.16 0.37 0.20 0.40 0.04*** 0.01

Notes: This table reports summary statistics on students’ academic and demographic characteristics. Panel A reports
measures related to CS major choice. Students who major in CS are required to complete two optional advanced CS
courses; the first course is a prerequisite for the second, although students may place out of the first and enroll directly
in the second. Panel B reports first-job earnings and graduate school enrollment. Panel C presents academic outcomes.
Panel D reports pre-college academic characteristics measured at admission; ACT scores are converted to SAT scores
using ACT–SAT concordance tables. Panel E summarizes racial and ethnic composition. The “Other” category
includes American Indian/Alaska Native, Native Hawaiian/Other Pacific Islander, Unknown race, and Nonresident.
P-values for differences in means are calculated using Welch’s t-test. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

36.2 percent in biology, 65.9 percent in chemistry, and 55.0 percent in physics.
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Table 1 reports summary statistics for students in the 2000–2016 cohorts, separately by

gender. Panel A summarizes outcomes related to CS major choice, including intended major

at admission, completion of the CS major, and enrollment in advanced CS coursework. Panel

B reports post-graduation outcomes, including first-job earnings and graduate school enrollment.

Panel C presents academic outcomes, Panel D reports pre-college academic characteristics measured

at admission, and Panel E summarizes racial and ethnic composition.

Consistent with prior evidence on gender gaps in STEM, female students exhibit substantially

lower engagement with CS than male students. Relative to men, women are 7 percentage points

less likely to major in CS and 6 percentage points less likely to report an intention to major in CS

at admission. Female students are also 8 percentage points less likely to enroll in optional advanced

CS courses, which are not capacity-constrained and therefore reflect students’ choices rather than

enrollment limits.

Panel B shows differences in post-graduation outcomes by gender. Female students are 4

percentage points more likely than male students to enroll in graduate school immediately after

graduation. Among students with available earnings data, women earn on average $5,770 less

annually than men in their first observed job. As discussed in Section 5, these differences partly

reflect variation in occupational sorting and graduate school attendance across majors.

Panel C indicates that female students have slightly lower academic performance on average,

with cumulative GPAs lower by 0.04 points and major GPAs lower by 0.08 points relative to

male students. However, these differences are small in magnitude. Panel D shows modest gender

differences in academic preparation at admission: female students score approximately 12 points

lower on the SAT math section and 13 points lower on total SAT scores.5

Finally, Panel E documents racial and ethnic composition by gender. Female students are more

5ACT scores are converted to SAT scores using the 2018 ACT–SAT concordance tables: https://www.act.org/

content/dam/act/unsecured/documents/ACT-SAT-Concordance-Tables.pdf (retrieved April 2, 2024).
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likely to identify as Asian or multiracial and less likely to identify as Black, Hispanic, or in the

“Other” category. These demographic characteristics, along with pre-college academic measures, are

included as controls in all regression specifications.

4 Empirical Specification

We adopt a difference-in-differences framework to estimate the differential effect of the curricular

reform on female students relative to male students. Since the introductory CS course is mandatory

for all students, both women and men were exposed to the reform. Identification therefore comes

from differential changes in outcomes for women relative to men across cohorts before and after the

reform.

We begin by estimating an event-study specification that allows the effect of the reform to vary

flexibly by entering cohort:

Outcomei =

2016∑
t=2000,t̸=2005

βt
1 1[c(i) = t]×Femalei+β2Femalei+X ′

iγ1+Postc(i)×X ′
iγ2+τc(i)+ϵi, (1)

where Outcomei denotes the outcome of interest for student i. Our primary outcomes include (i)

major choice, where Outcomei equals one if student i majors in CS; (ii) labor market earnings,

measured as the natural logarithm of estimated annual earnings in the first post-graduation job;

and (iii) graduate school enrollment, where Outcomei equals one if student i enrolls in graduate

school immediately after graduation. We also examine a range of academic outcomes, including

cumulative GPA, major GPA, time to graduation, and dropout.

Femalei is an indicator equal to one if student i is female. τc(i) denotes cohort fixed effects, which

absorb cohort-specific factors, including changes in cohort composition and aggregate conditions
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at graduation.6 The vector Xi includes student-level academic and demographic characteristics

measured at admission, including race indicators, SAT math and verbal scores, and indicators for

advanced high school coursework and SAT subject tests. We interact Xi with a post-reform indicator,

Postc(i), to allow for changes in the relationship between student characteristics and outcomes after

the reform. Standard errors are clustered at the cohort level to account for within-cohort correlation

(Abadie et al., 2023).

The coefficients of interest in equation 1 are βt
1 for t ≥ 2006, which capture the differential

effect of the reform on female students relative to male students in each post-reform cohort. The

identifying assumption is parallel trends: absent the reform, outcomes for female and male students

would have evolved similarly across cohorts. While this assumption is not directly testable, the

coefficients βt
1 for t < 2006 provide evidence on the plausibility of parallel trends prior to the reform.

To summarize the average effect of the reform, we also estimate a more parsimonious difference-in-differences

specification that replaces the cohort-specific interactions with a single post-reform interaction:

Outcomei = β1Postc(i) × Femalei + β2Femalei +X ′
iγ1 + Postc(i) ×X ′

iγ2 + τc(i) + ϵi. (2)

In this specification, β1 captures the average differential effect of the reform on female students

relative to male students across all post-reform cohorts. We report estimates from equation 2

alongside event-study plots derived from equation 1.

We estimate both specifications using ordinary least squares. Since treatment timing is common

across cohorts, and identification relies on differential responses by gender rather than staggered

adoption, OLS provides consistent estimates in this setting (see, e.g., Baker et al., Forthcoming;

Callaway and Sant’Anna, 2021; de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021;

6Nearly all students graduate in four years, so entering cohort and graduation year align closely. As a result, cohort
fixed effects also absorb graduation-year labor market conditions and institution-wide shocks that vary by cohort.
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Sun and Abraham, 2021).

5 Results

5.1 Effect on Major Choice

Figure 3: Effect of Curricular Reform on Major Choice
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Notes: This figure presents point estimates and 80% and 95% confidence intervals for βt
1 from equation 1. The

outcome is a binary indicator representing whether a student majored in CS. The curricular reform was implemented
in 2006, and the coefficient for the baseline cohort (2005) is normalized to zero. Standard errors are clustered at the
cohort-year level. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

Figure 3 presents event-study estimates of the effect of the curricular reform on the probability

that female students major in CS, relative to male students. The coefficients are normalized to the

cohort immediately preceding the reform. Standard errors are clustered at the cohort level.

The pre-reform coefficients indicate that the gender gap in CS major choice was stable in the years

leading up to the reform. This pattern is consistent with the parallel trends assumption underlying

our difference-in-differences design. Beginning with the 2006 entering cohort, the estimates increase
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sharply and remain persistently positive across post-reform cohorts.

Averaging across post-reform cohorts, the reform increased the probability that female students

major in CS by approximately 12.1 percentage points relative to men. Given a pre-reform female CS

major rate of roughly 15–20 percent, this represents a substantial increase in women’s participation

in the major. While the overall share of students majoring in CS also rose after the reform, the

increase among women was markedly larger, resulting in a significant narrowing of the gender gap.

Taken together, these results indicate that the curricular reform had a large and sustained effect

on women’s entry into the CS major. In contrast, trends in other STEM majors remained relatively

stable over the same period (Figure 1), suggesting that the observed changes reflect a CS-specific

response rather than a broader shift in students’ major preferences.

Table 2: Effects of Reform on Academic Outcomes

Sample: All Graduates CS Graduates

Outcome: Cum. GPA Major GPA Yrs to grad. Dropped Out (0/1) Cum. GPA Major GPA Yrs to grad. Dropped Out (0/1)
(1) (2) (3) (4) (5) (6) (7) (8)

Female × Post 0.019 0.027 -0.083 -0.010 0.009 0.010 -0.028 -0.005
(0.039) (0.042) (0.050) (0.014) (0.114) (0.088) (0.051) (0.061)

Female -0.059* -0.095** 0.063 0.013 -0.051 -0.092 -0.014 -0.008
(0.032) (0.037) (0.047) (0.013) (0.109) (0.082) (0.040) (0.059)

Cohort Year FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
Pre-Treatment Mean 3.206 3.239 4.077 0.055 3.176 3.231 4.104 0.077
Adj. R-squared 0.111 0.095 0.012 0.009 0.117 0.094 0.060 0.034
Observations 3122 3104 2990 3122 864 862 817 864

Notes: This table presents OLS estimates of equation 2. The model is estimated for various academic outcomes (i.e.,
cumulative GPA, major GPA, years to graduate, likelihood of dropping out) among all and CS graduates. Standard
errors are clustered at the cohort-year level and are in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

Academic Outcomes A potential concern is that the redesigned introductory course, by delaying

coverage of certain foundational topics such as object-oriented programming, could adversely affect

students’ academic performance in subsequent coursework. Another concern is that increased entry

into the major by students with less prior experience could lower average academic performance

among CS majors.

Table 2 reports difference-in-differences estimates for a range of academic outcomes. Columns
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(1)–(4) present results for all students, while columns (5)–(8) restrict the sample to students who

ultimately graduated with a CS major. Across all specifications, we find no evidence that the reform

negatively affected female students’ academic outcomes relative to male students.

For the full sample, the estimated effects on cumulative GPA, time to graduation, and dropout

are small and statistically insignificant. Among CS graduates, the reform has no detectable effect

on any of the academic outcomes either. Point estimates are generally close to zero, indicating that

the increased participation of women in CS did not come at the expense of academic performance.

Overall, these results suggest that the reform increased women’s entry into the CS major without

reducing academic performance either overall or within the major. The absence of negative effects

among CS graduates also indicates that the reform did not dilute academic standards or hinder

preparation for advanced coursework.

Figure 4: Share of CS Degrees Earned by Women: National vs the College, 2000 to 2016 Cohorts

20%

40%

60%

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Year

%
 o

f C
S

 d
eg

re
es

 e
ar

ne
d 

by
 w

om
en

series

College
National

Notes: This figure plots the percentage of CS degrees earned by women at the college level (the solid line) and
the national level (the dashed line) for cohorts entering in years 2000 to 2016. The data are from the Integrated
Postsecondary Education Data System (IPEDS). We define CS degrees as those classified under “Computer and
Information Sciences, General” (CIP Code 11.0101) or “Computer Science” (CIP Code 11.0701).
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College vs. National Trend of CS Majors Another concern is that the observed increase in

female participation in CS reflects broader national trends rather than the curricular reform. To

assess this possibility, Figure 4 compares the share of CS degrees earned by women at the college to

national trends using data from the Integrated Postsecondary Education Data System (IPEDS).7

For cohorts entering between 2000 and 2005, the share of CS degrees earned by women at the

college consistently lagged behind the national average. Beginning with the 2006 entering cohort,

the year the curricular reform was implemented, the pattern diverges: female representation in CS

at the college increased sharply and surpassed the national level, while the national share declined

in the early 2000s and recovered only gradually thereafter. By 2016, the national share of CS

degrees earned by women remained below its 2000 level, whereas the college’s share had increased

substantially.

This comparison suggests that national trends alone are unlikely to explain the magnitude and

timing of the post-reform increase. While the national data are descriptive and do not provide a

formal counterfactual, the divergence in trends coinciding with the timing of the reform is consistent

with the interpretation that the observed changes reflect a college-specific response rather than a

broad, nationwide shift in women’s interest in computer science.

5.2 Effects on Post-Graduation Outcomes

Labor Market Earnings Figure 5 presents event-study estimates of the effect of the curricular

reform on female students’ earnings in their first post-graduation job, relative to male students.

Earnings are measured using the median wage associated with the student’s occupation, as defined

by Standard Occupational Classification codes. As a result, the estimates capture changes in

occupational sorting rather than within-occupation wage differences.

7https://nces.ed.gov/ipeds/ (retrieved July 21, 2025). We define CS degrees as those classified under “Computer
and Information Sciences, General” (CIP Code 11.0101) or “Computer Science” (CIP Code 11.0701).
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Figure 5: Labor Market Earnings Effects of Reform
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Notes: This figure plots point estimates and 80% and 95% confidence intervals of βt
1 from equation 1. The outcome is

the natural logarithm of labor market earnings at a student’s first post-graduation job, measured using the median
salary associated with the student’s SOC code based on employer and job title. The curricular reform was implemented
in 2006, and the coefficient for the baseline cohort (2005) is normalized to zero. Standard errors are clustered at the
cohort-year level. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

The pre-reform coefficients do not display systematic upward or downward trends, providing little

evidence of differential pre-trends in earnings between women and men. Beginning with post-reform

cohorts, the estimates increase and remain positive. Averaged across post-reform cohorts, the

reform increased women’s post-graduation earnings by approximately 16.9 percent relative to men

(e0.156 − 1 ≈ 0.169). Evaluated at the pre-reform mean for female students, this corresponds to

an increase of roughly $7,500 in annual earnings at the first job.8 These gains are economically

meaningful, particularly given that they occur at the start of graduates’ careers.

Since earnings are assigned at the occupation level, we assess whether the observed gains

reflect improved occupational sorting. When we include fixed effects for occupation in the earnings

8With a pre-reform mean of logged median income of 10.704 for women, the implied median annual income is about
$44,500 (e10.704 = $44, 534). Applying the estimated 16.9 percent effect implies an earning increase of roughly $7,500
for women after the reform.
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regression, the estimated reform effect disappears (Appendix Figure A6). This result indicates that

the earnings gains are driven by women sorting into higher-paying occupations rather than higher

wages within occupations.

Figure 6: Effects on Graduate School Enrollment
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Notes: This figure presents point estimates and 80% and 95% confidence intervals of βt
1 from equation 1. The outcome

variable is a dummy indicator representing whether a student chose to attend graduate school after graduating from the
college. The curricular reform was implemented in 2006, with the coefficient for the baseline cohort (2005) normalized
to zero. Standard errors are clustered at the cohort-year level. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

Graduate School Attendance Figure 6 reports event-study estimates of the effect of the reform

on the probability that female students enroll in graduate school immediately after graduation,

relative to men. The estimates show a decline in graduate school enrollment among women beginning

with post-reform cohorts.

On average, the reform reduced female students’ probability of enrolling in graduate school

by approximately 9 percentage points relative to male students. An important limitation of the

data is that graduate enrollment is observed only immediately after graduation; students who enter

graduate school after a period in the labor market are not captured.
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One concern is that the earnings gains documented above are driven mechanically by reduced

graduate school enrollment, since graduate stipends are typically lower than entry-level labor market

earnings. To investigate this, Appendix Table A2 reports earnings effects separately for students

who enter the labor market immediately after graduation and those who enroll in graduate school.

Among students who do not attend graduate school, the reform increases women’s earnings by

approximately 8 percent relative to men (e0.077 − 1 ≈ 0.080), which accounts for roughly half of the

overall earnings gain.9 The remaining earnings increase is attributable to the reduction in graduate

school enrollment.

These results indicate that the reform improved women’s early-career labor market outcomes

through two channels: reduced graduate school enrollment immediately after graduation and

improved occupational sorting among labor market entrants.

5.3 Male Students’ Outcomes

Given that the introductory computer science course is required for all students, male students

were also exposed to the curricular reform. Identification in our difference-in-differences framework

therefore relies on comparing changes in outcomes for women to contemporaneous changes for

men. A potential concern is that the estimated effects for women reflect changes in male students’

outcomes in the opposite direction rather than genuine gains among women.

To examine this, we examine changes in male students’ outcomes before and after the reform

using specifications analogous to equation 2, restricting the sample to male students and controlling

for academic and demographic characteristics measured at admission. Table 3 reports estimated

post-reform changes in major choice and post-graduation outcomes for male students. Appendix

Figure A3 shows that male students’ outcomes do not exhibit sharp declines around the reform

9The results remain quantitatively similar after controlling for intended major fixed effects in column 2.
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year, consistent with the regression evidence.

Following the reform, male students’ probability of majoring in CS increased by 8.9 percentage

points, and their post-graduation earnings increased by approximately 18 percent (log-point estimate:

0.165). Additionally, while not statistically significant, the estimated effect suggests a decrease in the

probability of enrolling in graduate school immediately after graduation. These changes are in the

same direction as those observed for female students. As a result, the estimated effects for women

do not reflect relative gains driven by deterioration in male outcomes; if anything, accounting for

these positive trends among men would suggest even larger absolute increases in women’s outcomes.

We also report corresponding results for academic outcomes among male students in 4. As

shown in the table, their cumulative GPA and major GPA increased modestly after the reform,

while time to graduation and dropout rates remained statistically unchanged.

These results suggest that the curricular reform did not adversely affect male students’ academic

or labor market outcomes. Instead, male students experienced modest improvements along several

dimensions, reinforcing the interpretation that the estimated effects for women reflect genuine gains

rather than relative changes driven by declines among men.

Table 3: Male Students’ Main Outcomes

Sample: All Graduates

Outcome: CS Major Log Earnings Grad School
(1) (2) (3)

Post 0.089** 0.165 -0.059
(0.039) (0.098) (0.073)

Controls Y Y Y
Pre-Treatment Mean 0.248 10.929 0.292
Adj. R-squared 0.025 0.040 0.016
Observations 1900 1037 1038

Notes: This table reports OLS estimates from regressions of male students’ main outcomes on a post-reform
indicator (post = 1 for cohorts entering in 2006 or later). All specifications include controls for race, math and
verbal SAT scores, and indicators for SAT STEM subject tests, with standard errors clustered at the cohort-year
level.∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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Table 4: Male Students’ Academic Outcomes

All Graduates CS Graduates
(1) (2) (3) (4) (5) (6) (7) (8)

Cum. GPA Major GPA Yrs to Grad. Dropped Out Cum. GPA Major GPA Yrs to Grad. Dropped Out

Post 0.093*** 0.050* -0.003 -0.016 0.091 0.084 0.016 -0.005
(0.029) (0.027) (0.021) (0.009) (0.055) (0.057) (0.040) (0.033)

Controls Y Y Y Y Y Y Y Y
Pre-Treatment Mean 3.280 3.351 4.052 0.047 3.246 3.357 4.105 0.074
Adj. R-squared 0.100 0.084 0.014 0.015 0.088 0.076 0.020 0.013
Observations 1,900 1,890 1,823 1,900 577 576 543 577

Notes: This table reports OLS estimates from regressions of male students’ academic outcomes on a post-reform
indicator (post = 1 for cohorts entering in 2006 or later). All specifications include controls for race, math and verbal
SAT scores, and indicators for SAT STEM subject tests. Standard errors are clustered at the cohort-year level and
reported in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

5.4 Mechanisms for Major Choice

The increase in female students’ probability of majoring in computer science may operate through

several channels. We consider three potential mechanisms: (i) improved retention among students

who intended to major in CS at admission; (ii) increased switching into CS among students who

did not initially intend to major in CS; and (iii) compositional changes in entering cohorts toward a

higher share of female CS intenders.

To examine these channels, we extend equation 2 to allow the effect of the reform to vary by

whether a student intended to major in CS at admission:

Outcomei = β1Postc(i) × Femalei × IntendCSi + β2Postc(i) × Femalei + β3Femalei × IntendCSi

+ β4Postc(i) × IntendCSi + β5Femalei + β6IntendCSi

+X ′
iγ1 + Postc(i) ×X ′

iγ2 + τc(i) + ϵi,

(3)

where IntendCSi is an indicator equal to one if student i reported an intention to major in CS

at admission. The coefficient β1 + β2 captures the reform’s effect on female CS intenders relative

to male CS intenders and therefore reflects changes in retention. The coefficient β2 captures the

24



reform’s effect on female students who did not initially intend to major in CS, relative to their

male counterparts, and therefore reflects switching into CS. We estimate this specification both

with and without intended-major fixed effects. Including these fixed effects absorbs changes in the

composition of intended majors at admission, thereby isolating the retention and switching channels

from compositional changes.

Table 5 reports the results. Panel A documents substantial gender gaps prior to the reform.

Before 2006, female students who intended to major in CS were 22.9 percentage points less likely

than comparable male students to ultimately major in CS. Female students who did not intend

to major in CS were also less likely than men to end up in the CS major, although the gap was

smaller in magnitude.

Panel B shows that the reform primarily operates through improved retention among CS

intenders. Among students who intended to major in CS at admission, the reform increased women’s

probability of majoring in CS by 27.6 percentage points relative to men (p < 0.01), effectively

eliminating the pre-reform gender gap. In contrast, among students who did not initially intend

to major in CS, the estimated effect of the reform is small and statistically insignificant. The

difference between the retention and switching effects (β1) is statistically significant, indicating that

the reform’s impact on major choice was concentrated among women who entered college intending

to pursue CS.

Panel C reports the corresponding effects for male students and shows no statistically significant

change in CS major completion among male CS intenders after the reform. Column 2 adds

intended-major fixed effects, which absorb changes in the composition of intended majors at

admission. The results are nearly identical, ruling out compositional changes in entering cohorts as

a primary driver of the observed effects.10

10Appendix Figure A5 shows that once intended-major fixed effects are included, the overall reform effect is attenuated,
reflecting the fact that the reform primarily affects the subset of students who entered intending to major in CS.
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These results suggest that the increase in women’s participation in the CS major is driven

primarily by improved persistence among female students who initially intended to major in CS,

rather than by increased switching or changes in the composition of entering cohorts.

Table 5: Mechanisms: Reform Effects by Intended Major

CS Major Graduate School Log Earnings
(1) (2) (3) (4) (5) (6)

A. Pre-Reform Gender Gap (Women − Men)

CS-intenders (β3 + β5) -0.229*** -0.231*** 0.125 0.118 -0.226** -0.218*
(0.078) (0.077) (0.087) (0.091) (0.104) (0.109)

Non-CS-intenders (β5) -0.074*** -0.067*** 0.102*** 0.092*** -0.200*** -0.182***
(0.010) (0.012) (0.016) (0.021) (0.021) (0.018)

B. Reform Effect on Women Relative to Men

CS-intenders (β1 + β2) 0.276*** 0.275*** -0.053 -0.057 0.149 0.152
(0.092) (0.091) (0.110) (0.112) (0.149) (0.152)

Non-CS-intenders (β2) 0.025 0.020 -0.082** -0.093** 0.128** 0.141***
(0.023) (0.024) (0.035) (0.038) (0.045) (0.045)

Difference (β1) 0.250** 0.255** 0.029 0.036 0.021 0.011
(0.101) (0.102) (0.122) (0.128) (0.162) (0.170)

C. Reform Effect on Men

Male CS-intenders (β4) -0.095 -0.103 -0.036 -0.060 -0.054 -0.023
(0.063) (0.065) (0.046) (0.046) (0.049) (0.050)

Intended Major FE N Y N Y N Y
Cohort Year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Pre-Treatment Mean 0.079 0.079 0.402 0.402 10.704 10.704
Adj. R-squared 0.233 0.241 0.098 0.129 0.144 0.173
Observations 3,122 3,122 1,672 1,672 1,669 1,669

Notes: This table presents OLS estimates of equation 3, decomposing the reform effect by whether a student
intended to major in CS at admission. Panel A reports pre-reform gender gaps. Panel B reports reform effects on
women relative to men: “Retention” captures effects among CS-intenders (improved retention), while “Switching”
captures effects among non-CS-intenders. Panel C shows reform effects on men. Odd columns exclude intended
major fixed effects; even columns include them to control for composition changes. All specifications include cohort-
year fixed effects and demographic controls. Standard errors clustered at the cohort-year level in parentheses.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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5.5 Mechanisms for Post-Graduation Outcomes

Graduate School Enrollment We next examine whether the mechanisms underlying post-graduation

outcomes differ by students’ intended major at admission. Columns 3 and 4 of Table 5 report results

for graduate school enrollment.

Prior to the reform, women, particularly those who did not intend to major in CS, were more

likely than men to enroll in graduate school immediately after graduation. Female non-CS intenders

exceeded their male counterparts by 10.2 percentage points. Following the reform, the decline in

graduate school enrollment among women is concentrated primarily among non-CS intenders. For

this group, graduate school attendance falls by 8.2 percentage points (p < 0.05), while the estimated

effect for CS intenders is smaller and statistically indistinguishable from zero. These results are

unchanged when intended-major fixed effects are included.

Labor Market Earnings Columns 5 and 6 examine earnings at the first post-graduation

job. Prior to the reform, women faced substantial earnings penalties relative to men, regardless

of intended major. Post-reform earnings gains, by contrast, are broad-based. Female non-CS

intenders experience a statistically significant increase in earnings of 13.7 percent relative to men

(e0.128 − 1 ≈ 0.137), while the estimated effect for female CS intenders is of similar magnitude but

not statistically significant due to larger standard errors. The difference between the retention

and switching effects is small and statistically insignificant, indicating that earnings gains are not

concentrated among women who initially intended to major in CS. Earnings estimates remain stable

when intended-major fixed effects are included, ruling out compositional changes as an explanation.

Overall, these findings indicate that the post-reform reduction in graduate school enrollment and

the associated earnings gains are not mechanically tied to increased retention among CS intenders.

Instead, labor market benefits accrue broadly to female students, regardless of their initial intention

27



to major in CS.

6 Conclusion

This paper provides causal evidence that curricular reform in a required introductory STEM

course can substantially increase women’s participation in computer science. Exploiting the

introduction of a redesigned introductory CS course at a STEM-focused liberal arts college, we

show that the reform increased the probability that female students major in CS by approximately

12 percentage points relative to male students. This increase is driven primarily by improved

persistence among women who entered college intending to major in CS.

The reform did not adversely affect academic performance. Female students’ cumulative GPA,

major GPA, time to graduation, and persistence are unchanged relative to men, and male students’

academic outcomes also do not deteriorate following the reform. These results indicate that

increased female participation in CS did not come at the expense of academic standards or student

performance.

The reform also affected post-graduation outcomes. Female students’ early-career earnings

increased by approximately 17 percent relative to men, reflecting both improved occupational sorting

and a reduction in graduate school enrollment immediately after graduation. Roughly half of the

earnings gain is attributable to reduced graduate school attendance, with the remainder driven by

sorting into higher-paying occupations among labor market entrants.

Several limitations are worth noting. The estimated effects capture the combined impact of the

curricular redesign and two small complementary initiatives, which were implemented simultaneously

and cannot be separately identified. In addition, our earnings measures capture only early-career

outcomes and reflect occupational wages rather than within-occupation pay. Whether similar

reforms would generate comparable effects at larger institutions or in different institutional settings
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remains an open question.

Despite these limitations, our findings suggest that relatively low-cost changes to the design of

required introductory STEM courses can meaningfully influence who persists in STEM fields and

shape early-career labor market outcomes. Curricular reforms that broaden students’ understanding

of the discipline and its applications, particularly in required introductory courses, may therefore

represent an effective policy lever for narrowing gender gaps in STEM.
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Appendix

A Additional Figures and Tables

Figure A1: Number of Students by Majors, 2000 to 2016 Cohorts
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Notes: This figure presents the evolution of the number of students across cohorts from 2000 to 2016 within each core
major. The red vertical dashed line indicates the CS curriculum reform in 2006.

Table A1: Percentage of Students with Missing Placement Data

Gender Pre Post Post − Pre

Female 28.2% 55.8% 27.6pp***
Male 30.0% 54.6% 24.7pp***
Male − Female 1.8pp -1.1pp -2.9pp

Notes: This table reports the percentage of students with missing placement data, by reform period, gender, and their
interactions. All reported differences are tested using t-tests of mean differences. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Figure A2: Number of Students by Intended Majors, 2000 to 2016 Cohorts
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Notes: This figure presents the evolution of the number of students across cohorts from 2000 to 2016 within each core
intended major. The red vertical dashed line indicates the CS curriculum reform in 2006.

Figure A3: Male Students’ Main Outcomes over Time

Declared Major in CS Attend Graduate School Log Median Income at First Job
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Notes: This figure plots the mean of our main outcomes, including CS major, log median income, and graduate school
attendance among men over the study period (years 2000 to 2016), where the CS curriculum reform in 2006 is marked
with a red dashed vertical line.
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Figure A4: Male Students’ Academic Outcomes over Time

Dropped Out Years to Graduate

Cumulative GPA Major GPA
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Notes: This figure plots the mean of four academic outcomes, including cumulative GPA, major GPA, years to
graduation, and dropout rate among men over the study period (years 2000 to 2016), where the CS curriculum reform
in 2006 is marked with a red dashed vertical line.
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Figure A5: Effect of Curricular Reform on Major Choice (With Intended Major Fixed Effects)
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Notes: This figure presents point estimates and 80% and 95% confidence intervals for βt
1 from equation 1 when

fixed effects for students’ intended major at admission are added as an additional control. The outcome is a binary
indicator representing whether a student majored in CS. The curricular reform was implemented in 2006, and the
coefficient for the baseline cohort (2005) is normalized to zero. Standard errors are clustered at the cohort-year level.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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Figure A6: Labor Market Earnings Effects of Reform (With Occupation Fixed Effects)
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Notes: This figure plots point estimates and 80% and 95% confidence intervals of βt
1 from equation 1 when fixed

effects for the SOC code of students’ first job are added as an additional control. The outcome is the natural logarithm
of labor market earnings at a student’s first post-graduation job, measured using the median salary associated with
the student’s SOC code based on employer and job title. The curricular reform was implemented in 2006, and the
coefficient for the baseline cohort (2005) is normalized to zero. Standard errors are clustered at the cohort-year level.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

6



Table A2: Reform Effects by Graduate School Attendance

Log Earnings
(1) (2)

A. Pre-Reform Gender Gap (Women − Men)

GS-attendees (β3 + β5) -0.019*** -0.004
(0.005) (0.008)

Non-GS-attendees (β5) -0.132*** -0.121***
(0.038) (0.036)

B. Reform Effect on Women Relative to Men

GS-attendees (β1 + β2) 0.019* 0.015
(0.011) (0.013)

Non-GS-attendees (β2) 0.077* 0.071*
(0.043) (0.040)

Difference (β1) -0.058 -0.056
(0.043) (0.044)

C. Reform Effect on Men

Male GS-attendees (β4) -0.023 -0.020
(0.038) (0.037)

Intended Major FE N Y
Cohort Year FE Y Y
Controls Y Y
Pre-Treatment Mean 10.704 10.704
Adj. R-squared 0.843 0.844
Observations 1,669 1,669

Notes: This table presents OLS estimates of equation 2, allowing the effect to vary by students’ graduate school
enrollment status post-graduation. The model is estimated for the log median income at the first job after graduation.
Column 2 includes intended major fixed effects. Standard errors are clustered at the cohort-year level and are in
parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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